Note

Sharpness of Timan's Converse Result for Polynomial Approximation*

Vilmos Totik
Bolyai Institute, Szeged 6720, Hungary; Department of Maihematics, University of South Florida, Tampa, Florida 33620, U.S.A.
Communicated by the Editors-in-Chief

Received October 16, 1990

We verify a conjecture of \mathbf{M}. Hasson about the sharpness of Timan's converse result. © 1991 Academic Press, Inc.

A. F. Timan $[2,6.2 .3]$ proved that if for a function f that is continuous on $[-1,1]$ there are polynomials $P_{n}, \operatorname{deg} P_{n} \leqslant n, n=1,2, \ldots$, with the property

$$
\left|f(x)-P_{n}(x)\right| \leqslant\left(\frac{\sqrt{1-x^{2}}}{n}+\frac{1}{n^{2}}\right)^{r} \omega\left(\frac{\sqrt{1-x^{2}}}{n}+\frac{1}{n^{2}}\right), \quad-1 \leqslant x \leqslant 1
$$

where the modulus of continuity ω satisfies

$$
\sum_{n=1}^{\infty} \frac{1}{n} \omega\left(\frac{1}{n}\right)<\infty,
$$

then f is r-times continuously differentiable on $[-1,1]$. In [1] M. Hasson stated the following conjecture: Suppose that $\left\{a_{l}\right\}$ is a monotone increasing positive sequence with

$$
\sum_{l=1}^{\infty} \frac{1}{l a_{l}}=\infty
$$

[^0]Then there exists a continuous function f which is not in $C^{(r)}[-1,1]$, but for its best polynomial approximation $E_{n}(f)$ by polynomials of degree at most n we have

$$
\begin{equation*}
E_{n}(f)=O\left(\frac{1}{n^{2 r} a_{n}}\right) \tag{1}
\end{equation*}
$$

This would show that the Timan result cannot be improved in any sense. Hasson himself verified the conjecture for $r=1$, but the general case has remainded open.

In this note we give a simple proof for the above conjecture. We show that for some sequence $\left\{\varepsilon_{l}\right\}$ of the numbers $\{0,1\}$ the function

$$
f(x)=\sum_{l=1}^{\infty} \varepsilon_{l} \frac{1}{l^{2 r+1} a_{l}} T_{l}(x)
$$

where $T_{l}(x)=\cos (l \arccos x)$ are the Chebyshev polynomials, satisfies the above conditions. Since

$$
\sum_{l=n+1}^{\infty} \frac{1}{l^{2 r+1} a_{l}} \leqslant \frac{1}{n^{2 r} a_{n}}
$$

(1) is obvious for any choice of the ε_{k} 's. The heuristics behind $f \notin C^{r}[-1,1]$ is that by

$$
T_{n}^{(r)}(1)=\frac{n^{2}\left(n^{2}-1\right) \cdots\left(n^{2}-(r-1)^{2}\right)}{1 \cdot 3 \cdots(2 r-1)}>c_{r} n^{2 r}, \quad n \geqslant r
$$

(see $[2,4.8 .8]$) we get by formally differentiating the series representing f termwise that if all ε_{k} equals 1 , then

$$
f^{(r)}(1) \geqslant \sum_{l=1}^{\infty} \frac{1}{l^{2 r+1} a_{l}} c_{r} l^{2}=\infty
$$

Of course, termwise differentiation is not permitted; this is why we need the following argument.

We shall choose sequences $\left\{M_{k}\right\}$ and $\left\{N_{k}\right\}$ of natural numbers so that $M_{k}<N_{k}<M_{k+1}$ is satisfied for all k and set $\varepsilon_{l}=1$ for $M_{k} \leqslant l<N_{k}$, $k=1,2, \ldots$, and $\varepsilon_{l}=0$ otherwise. We can differentiate termwise the series representing $f(r-1)$-times. Hence, we can select M_{k}, N_{k}, and small positive numbers τ_{k} in the order $\ldots, M_{k}, N_{k}, \tau_{k}, M_{k+1}, \ldots$ in such a way that with

$$
f_{k}(x)=\sum_{l=1}^{M_{k}} \varepsilon_{l} \frac{1}{l^{2 r+1} a_{l}} T_{l}(x)
$$

we satisfy the following conditions one after the other:

$$
\begin{gathered}
f_{k}^{(r)}(1)=\sum_{l=1}^{M_{k}} \frac{1}{l^{2 r+1} a_{l}} \frac{l^{2}\left(l^{2}-1\right) \cdots\left(l^{2}-(r-1)^{2}\right)}{1 \cdot 3 \cdots(2 r-1)}>k+1, \\
\frac{f_{k}^{(r-1)}(1)-f_{k}^{(r-1)}\left(1-\tau_{k}\right)}{\tau_{k}}>k+1, \\
\sum_{l=N_{k}}^{\infty} \frac{1}{l^{3} a_{l}}<\frac{\tau_{k}}{2} .
\end{gathered}
$$

With this construction we obviously have

$$
\frac{f^{(r-1)}(1)-f^{(r-1)}\left(1-\tau_{k}\right)}{\tau_{k}} \geqslant \frac{f_{k}^{(r-1)}(1)-f_{k}^{(r-1)}\left(1-\tau_{k}\right)}{\tau_{k}}-1>k .
$$

That is, $f^{(r-1)}$ is not differentiable at 1 from the left.

Acknowledgment

The author wants to acknowledge that he learned about the problem in a note of R. Sakai.

References

1. M. Hasson, The sharpness of Timan's theorem on differentiable functions, J. Approx. Theory 35 (1982), 264-274.
2. A. F. Timan, "Theory of Approximation of Functions of a Real Variable," Macmillan Co., New York, 1963.

[^0]: * Supported in part by the Hungarian National Science Foundation for Scientific Research, Grant No. 1157.

